

16.485: VNAV - Visual Navigation for Autonomous Vehicles

Rajat Talak

Lecture 31-32.5: Deep Learning Architectures on 3D Data

VNAV thus far ...

3D Geometric Reconstruction

VNAV thus far ...

3D Geometric Reconstruction

Point Cloud

Vespa et al. "Efficient Octree-based Volumetric SLAM Supporting Signed-Distance and Occupancy Mapping" RAL 2017 Mesh

"seeing is not understanding"

"seeing is not understanding"

Detect objects and humans

... No!!

Detect objects and humans

Learn interaction between human, object,

scene

- Person reading a book
- Laptop is on the desk

... No!!

Detect objects and humans

Interact with humans

- "Get me a cup of coffee"
- Surprise
- Human intent and emotions

Learn interaction between human, object,

scene

- Person reading a book
- Laptop is on the desk

... No!!

Detect objects and humans

Interact with humans

- "Get me a cup of coffee"
- Surprise
- Human intent and emotions

Scene dynamics

- Falling object

Learn interaction between human, object,

scene

- Person reading a book
- Laptop is on the desk

... No!!

Detect objects and humans

Interact with humans

- "Get me a cup of coffee"
- Surprise
- Human intent and emotions

Scene dynamics

- Falling object

Learn interaction between human, object,

scene

- Person reading a book
- Laptop is on the desk

Identify and work with deformable objects

- Distinguish table cloth from the table
- "Spread the table cloth on the table"f

... No!!

Detect objects and humans

Interact with humans

- "Get me a cup of coffee"
- Surprise
- Human intent and emotions

Scene dynamics

- Falling object

Learn interaction between human, object,

scene

- Person reading a book
- Laptop is on the desk

Identify and work with deformable objects

- Distinguish table cloth from the table
- "Spread the table cloth on the table"f

Need for Semantic Understanding of the 3D Scene

Semantic Understanding

No formal definition

Semantic Understanding

No formal definition

"... we consider semantics in a robotics context to be about the meaning of things; the meaning of places, objects, other entities occupying the environment, or even language used in communicating between robots and humans or between robots themselves."

Garg et al. "Semantics for Robotic Mapping, Perception and Interaction: A Survey" 2021

Semantic Understanding

No formal definition

"... we consider semantics in a robotics context to be about the meaning of things; the meaning of places, objects, other entities occupying the environment, or even language used in communicating between robots and humans or between robots themselves."

Garg et al. "Semantics for Robotic Mapping, Perception and Interaction: A Survey" 2021

"... the research focus has shifted from reconstructing the 3D scene geometry to enhancing the 3D maps with semantic information about scene components."

Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari "SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences" 2021

Research Activity

1st Workshop on Language for 3D Scenes at CVPR 2021

3D Scene Understanding for Vision, Graphics, and Robotics at CVPR 2021

3rd ScanNet Indoor Scene Understanding Challenge at CVPR 2021

ScanRefer

Research Activity

Facebook AI Habitat Challenge

Given an object, the goal is to move and find an instance of it in the scene.

source : https://aihabitat.org/challenge/2021/

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

Recently, panoptic segmentation approaches have been used in volumetric mapping pipelines.

Schmid et al. "Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency" 2021

Source: Rajay Krishna et al. "Visual Genome: Connecting Language and Vision using Crowdsourced Dense Image Annotations" 2016

State-of-the-art approaches use Deep Learning based architectures

Semantic Understanding on 3D Data

Point Clouds, Voxels, Meshes

Point Cloud

Mesh

Vespa et al. "Efficient Octree-based Volumetric SLAM Supporting Signed-Distance and Occupancy Mapping" RAL 2017

Semantic Understanding on 3D Data

Graphs

Rosinol et al. "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans" 2020 Wald et al. "Learning 3D Semantic Scene Graphs from 3D Indoor Reconstruction" 2020

Armeni et al. "3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera" 2019

Semantic Understanding on 3D Data

How do we develop Deep Learning Architectures on Voxels, Point Clouds, Meshes, and Graphs?

Plan for the three lectures ...

Deep Learning Architectures on 3D Data

- Motivation: Semantic Understanding
- Recap: Machine Learning, Deep Learning on Image
- Neural Architectures for 3D Data
 - Voxels, Point clouds, Meshes
- Datasets and Software

2

Geometric Deep Learning

- Unifying view of developing architectures on all data
- Symmetry
- Equivariance, Invariance, Convolutions
- Unified Blueprint

Learning on Scene Graphs

- Scene Graphs for Semantic Understanding
- Graph Neural Networks
- Limitations

3

• Node and Relationship Prediction

First Part

Deep Learning Architectures on 3D Data

- Motivation: Semantic Understanding
- Recap: Machine Learning, Deep Learning on Image
- Neural Architectures for 3D Data
 - Voxels, Point clouds, Meshes
- Datasets and Software

Key ideas and heuristics for Deep Learning architectures on Voxels, Point Clouds, Meshes

First Part

Deep Learning Architectures on 3D Data

- Motivation: Semantic Understanding
- Recap: Machine Learning, Deep Learning on Image
- Neural Architectures for 3D Data
 - Voxels, Point clouds, Meshes
- Datasets and Software

Key ideas and heuristics for Deep Learning architectures on Voxels, Point Clouds, Meshes

Background

A Quick Recap: The Machine Learning Problem

The Machine Learning Problem

Data
$$\{(x_i, y_i)\}_{i=1}^N$$
 $x_i \in \mathbb{X}$ $y_i \in \mathbb{Y}$

Truth $f^* : \mathbb{X} \to \mathbb{Y}$

Model $f_{\theta} : \mathbb{X} \to \mathbb{Y} \qquad \theta \in \Theta$

Goal: find $\theta \in \Theta$ such that $f^* \approx f_{\theta}$

The Machine Learning Problem

Loss Function $l: \mathbb{Y} \times \mathbb{Y} \to \mathbb{R}$

$$l(y, y') = ||y - y'||_2^2$$
$$l(y, y') = -y \log(y')$$

Empirical Loss Minimization

$$\min_{\theta \in \Theta} \mathcal{L}_{\theta} = \frac{1}{N} \sum_{i=1}^{N} l(y_i, f_{\theta}(x_i))$$

Optimization Method

Gradient descent $\theta_{t+1} = \theta_t - \alpha_t \partial \mathcal{L}_{\theta} / \partial \theta$ learning rate

The Goal

Come up with a model $f_{\theta} : \mathbb{X} \to \mathbb{Y}$ such that $f^* \approx f_{\theta}$

Terminology

Come up with a model $f_{\theta} : \mathbb{X} \to \mathbb{Y}$ such that $f^* \approx f_{\theta}$

Architecture

$$\mathcal{A} = \{ f_{\theta} : \mathbb{X} \to \mathbb{Y} \mid \theta \in \Theta \}$$

Model

$$f_{ heta}$$
 for a particular choice of $heta$

A Quick Recap: Deep Learning Architectures on Images

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021
Progress on Object Detection (20 years)

State-of-the-art models = composition of convolution, pooling, unpooling, fully connected layers

Convolutional Neural Networks for Classification

LeCun et al "Gradient-based Learning Applied to Document Recognition" 1998

State-of-the-art models = composition of convolution, pooling, unpooling, fully connected layers

Convolutional Neural Networks for Segmentation

ImageNet Large Scale Visual Recognition Challenge

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

ImageNet Large Scale Visual Recognition Challenge

"Revolution of Depth"

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

Residual Connections

• Deeper models were harder to optimize

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error.

Residual Connections

ImageNet Large Scale Visual Recognition Challenge

"Revolution of Depth"

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

Takeaways ...

- Basic building blocks:
 - Convolutions
 - Pooling
 - Unpooling
 - Single and Multi-layer perceptron

Noh et al "Learning Deconvolution Network for Semantic Segmentation" CVPR 2015

• Residual Connections

He et al. "Deep Residual Learning for Image Recognition" 2015

Architectures for Learning in 3D

Point Cloud

Voxel

Voxels

Wu et al "3D ShapeNets: A Deep Representation for Volumetric Shapes" CVPR 2015

Naturana and Scherer "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition" IROS 2015

Limitations

Very high memory usage

Source: Justin Johnson "Deep Learning for Computer Vision" Michigan University, Fall 2020.

Storing 1024³ voxel grid takes 4GB of memory

Limitations

Very high memory usage

Reported results on small sized voxel grids 32³

Naturana and Scherer "VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition" IROS 2015

Source: Justin Johnson "Deep Learning for Computer Vision" Michigan University, Fall 2020.

Storing 1024³ voxel grid takes 4GB of memory

Voxel memory usage (V x V x V float32 numbers)

Octree-based Architectures

Define convolutions on octree

Helps due to sparsity of occupied regions. But not much!

Reported results on voxel grids of size 256³

Source: Riegler et al. "OctNet: Learning Deep 3D Representations at High Resolution" 2017

Point Clouds

Have more inherent structure than voxel representation

Representative of the sparse data

Point Clouds

PointNet

PointNet

The (classification) output should be invariant to ordering of points in the point cloud.

$$f(\{x_1, x_2, \dots, x_n\}) = g(h(x_1), h(x_2), \dots, h(x_n))$$

. . .

PointNet

The (classification) output should be invariant to ordering of points in the point cloud.

$$f(\{x_1, x_2, \dots, x_n\}) = g(h(x_1), h(x_2), \dots, h(x_n))$$

$$\swarrow$$
max pooling

PointNet

The (classification) output should be invariant to ordering of points in the point cloud.

 $f(\{x_1, x_2, \dots, x_n\}) = \max\{h(x_i), h(x_2), \dots, h(x_n)\}$

MLP + Max Pooling

 $f(\{x_1, x_2, \dots, x_n\}) = \max\{\mathrm{MLP}(x_1), \mathrm{MLP}(x_2), \dots, \mathrm{MLP}(x_n)\}$

shared weights

MLP + Max Pooling

 $f(\{x_1, x_2, \dots, x_n\}) = \max\{\mathrm{MLP}(x_1), \mathrm{MLP}(x_2), \dots, \mathrm{MLP}(x_n)\}$

shared weights

MLP + Max Pooling

 $f(\{x_1, x_2, \dots, x_n\}) = \max\{\operatorname{MLP}(x_1), \operatorname{MLP}(x_2), \dots, \operatorname{MLP}(x_n)\}$

Regress a Transformation Matrix

shared weights

MLP + Max Pooling

 $f(\{x_1, x_2, \dots, x_n\}) = \max\{\mathrm{MLP}(x_1), \mathrm{MLP}(x_2), \dots, \mathrm{MLP}(x_n)\}$

Regress a Transformation Matrix

Composition of these two basic operations:

- 1. MLP + Max Pooling
- 2. Regress a Transformation Matrix

Regresses a transformation matrix and applies it to each input point

Multi-Layer Perceptron (shared weights) to uplift the dimensions

Max Pooling to extract global feature

$$f(\{x_1, x_2, \dots, x_n\}) = \max\{h(x_i), h(x_2), \dots, h(x_n)\}$$

PointNet Architecture: Segmentation

PointNet Architecture: Segmentation

PointNet Architecture: Segmentation

Another MLP to extract the final score for each point

Results

Object Part Segmentation

Object Classification

-	input	#views	accuracy	accuracy
			avg. class	overall
SPH [11]	mesh	-	68.2	-
3DShapeNets [28]	volume	1	77.3	84.7
VoxNet [17]	volume	12	83.0	85.9
Subvolume [18]	volume	20	86.0	89.2
LFD [28]	image	10	75.5	-
MVCNN [23]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2

 Table 1. Classification results on ModelNet40. Our net achieves

 state-of-the-art among deep nets on 3D input.

State-of-the-art @2017

Output

A Limitation of PointNet

Does not extract a sequence of hierarchical features; except a global feature

A Limitation of PointNet

Does not extract a sequence of hierarchical features; except a global feature

Does not take into account the local geometry formed by points

Point Clouds

PointNet

PointNet++

Uses PointNet module as a building block

Transforms a set of *m* points to a single point with a feature vector

PointNet module

Extracts hierarchical features by recursively applying PointNet module

PointNet module

Sampling

Samples *n*' points using farthest point sampling

Grouping

For each of the sampled point, selects K points using either

- K-nearest neighbors or
- K points within maximum radius of R

PointNet Layer

Applies PointNet-module to each K-grouping of points and generates a feature vector

Sampling

Samples *n*' points using farthest point sampling

Grouping

For each of the sampled point, selects K points using either

- K-nearest neighbors or
- K points within maximum radius of R

PointNet Layer

Applies PointNet module to each K-grouping of points and generates a feature vector

Looks similar to convolution + pooling?

Sampling

Samples *n*' points using farthest point sampling

Grouping

For each of the sampled point, selects K points using either

- K-nearest neighbors or
- K points within maximum radius of R

PointNet Layer

Applies PointNet-module to each K-grouping of points and generates a feature vector

PointNet++ for Classification and Segmentation

PointNet++ for Classification

PointNet++ for Classification

Max Pool + MLP on features of the final layer

PointNet++ for Segmentation

PointNet++ for Segmentation

More Details

PointNet++ for Segmentation

Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" 2017

Non-uniform Point Density

PointNet and PointNet ++

implicitly assumes uniform point density

- eg k-nearest neighbors in grouping

Becomes fragile with non-uniform point density

Non-uniform Point Density

PointNet and PointNet ++

implicitly assumes uniform point density

- eg k-nearest neighbors in grouping

Becomes fragile with non-uniform point density

Not an issue on Images or Voxel Grids

Fix for Non-uniform Point Density

Random Point Dropout at Training

Random Point Dropout at Training

Better Performance than PointNet Increased Compute Time

Limitations of PointNet++

Does not take into account the local geometry formed by points

Geometry of hierarchical features are pre-determined

Point Clouds

PointNet

EdgeConv

PointNet++

Form a local graph by connecting nearby points

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

Wang et al. "Dynamic Graph CNN for Learning on Point Clouds" ACM Trans. Graph 2019

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

invariant function like max or sum

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

$$i$$
 $f(i, f) \in E$ $O(i, f)$ f

Form a local graph by connecting nearby points

Apply convolution-like operation on this graph

Nearby: with respect to node feature vectors \mathcal{X}_i

$$x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

invariant function like max or sum

Form a local graph by connecting nearby points

PointNet++

Connects k-NN from position of points

EdgeConv

Connects k-NN from feature vectors of points

Does this at each layer

EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to $\, {\mathcal X}_{i} \,$

Step 2: Update feature vectors

$$x_i \leftarrow x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to $\, {\mathcal X}_{i} \,$

Step 2: Update feature vectors

$$x_i \leftarrow x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

iterate

Need to compute a new graph at each stage

EdgeConv Architecture

Step 1: Form a local graph by connecting nearby points with respect to $\, {\mathcal X}_{i} \,$

Step 2: Update feature vectors

$$x_i \leftarrow x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$$

Example

iterate

$$h_{\Theta}(x_i, x_j) = \sigma(\Theta_a \cdot (x_j - x_i) + \Theta_b x_i)$$

Limitations of EdgeConv

Computationally more expensive than PointNet and PointNet++

Limitations of EdgeConv

Computationally more expensive than PointNet and PointNet++

Is this really a convolution operation?

 $x'_i = \Box_{j:(i,j)\in E} \quad h_{\Theta}(x_i, x_j)$

Point Clouds

PointNet

PointNet++

EdgeConv

KPConv
Point Clouds

PointNet

PointNet++

EdgeConv

KPConv

Convolution based architectures for Point Cloud

Convolution

$$(f * g)(x) = \int_{\mathcal{X}} f(z)g(z - x)dz$$

$$g(z-x)$$

Convolution on Point Clouds?

$$(f * g)(x) = \int_{\mathcal{X}} f(z)g(z - x)dz$$

$$g(z-x)$$

We only have points on ${\mathcal X}$

$$\mathcal{F} = \{(x_i, f_i)\}_i$$

Convolution on Point Clouds?

$$(f * g)(x) = \int_{\mathcal{X}} f(z)g(z - x)dz$$

We only have points on ${\mathcal X}$

Convolution on Point Clouds?

$$(\mathcal{F} * g)(x) = \sum_{i} f(x_i)g(x_i - x)$$

$$f(x)$$

$$f(x_i)$$
We only have points on \mathcal{X}

$$\mathcal{F} = \{(x_i, f_i)\}_i$$

Convolution on Point Clouds?

$$(\mathcal{F} * g)(x) = \sum_{i} f_{i} \cdot g(x_{i} - x)$$

$$g(z - x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x_{i})$$

$$\mathcal{F} = \{(x_{i}, f_{i})\}_{i}$$

Convolution on Point Clouds?

$$(\mathcal{F} * g)(x) = \sum_{i \in N(x)} f_i \cdot g(x_i - x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$
We only have points on \mathcal{X}

$$\mathcal{F} = \{(x_i, f_i)\}_i$$

Convolution on Point Clouds

$$(\mathcal{F} * g)(x) = \sum_{i \in N(x)} f_i \cdot g(x_i - x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$

$$f(x)$$
We only have points on \mathcal{X}

$$\mathcal{F} = \{(x_i, f_i)\}_i$$

Convolution on Point Clouds

$$(\mathcal{F} * g)(x) = \sum_{i \in N(x)} f_i \cdot g(x_i - x)$$

Point Cloud $\mathcal{F} = \{(x_i, f_i)\}_i$

Convolution on Point Clouds

$$(\mathcal{F} * g)(x) = \sum_{i \in N(x)} f_i \cdot g(x_i - x)$$
Neighborhood Kernel

Point Cloud $\mathcal{F} = \{(x_i, f_i)\}_i$

Convolution on Point Clouds

$$(\mathcal{F} * g)(x) = \sum_{i \in N(x)} f_i \cdot g(x_i - x)$$

$$\mathcal{F} = \{(x_i, f_i)\}_i$$
Neighborhood Kernel

Many choices of kernel functions in the literature.

Kernel Point Convolution (KPConv)

 $g(z) = \sum h(z, z_k) W_k$ $1 \le k \le K$

A specific choice of kernel function

Kernel Point Convolution (KPConv)

 $g(z) = \sum h(z, z_k) W_k$ $1 \le k \le K$

A specific choice of kernel function

More Details

Kernel Point Convolution (KPConv)

KPConv Performance

	ModelNet40	Shapel	NetPart
Methods	OA	mcIoU	mIoU
SPLATNet [34]	-	83.7	85.4
SGPN [42]	-	82.8	85.8
3DmFV-Net [9]	91.6	81.0	84.3
SynSpecCNN [48]	-	82.0	84.7
RSNet [15]	-	81.4	84.9
SpecGCN [40]	91.5		85.4
PointNet++ [27]	90.7	81.9	85.1
SO-Net [19]	90.9	81.0	84.9
PCNN by Ext [2]	92.3	81.8	85.1
SpiderCNN [45]	90.5	82.4	85.3
MCConv [13]	90.9		85.9
FlexConv [10]	90.2	84.7	85.0
PointCNN [20]	92.2	84.6	86.1
DGCNN [43]	92.2	85.0	84.7
SubSparseCNN [9]	-	83.3	86.0
KPConv rigid	92.9	85.0	86.2
KPConv deform	92.7	85.1	86.4

Convolution-based approaches perform better than PointNet, PointNet++, EdgeConv

KPConv Performance

	ModelNet40	Shapel	NetPart
Methods	OA	mcIoU	mIoU
SPLATNet [34]	-	83.7	85.4
SGPN [42]	-	82.8	85.8
3DmFV-Net [9]	91.6	81.0	84.3
SynSpecCNN [48]	-	82.0	84.7
RSNet [15]	-	81.4	84.9
SpecGCN [40]	91.5		85.4
PointNet++ [27]	90.7	81.9	85.1
SO-Net [19]	90.9	81.0	84.9
PCNN by Ext [2]	92.3	81.8	85.1
SpiderCNN [45]	90.5	82.4	85.3
MCConv [13]	90.9	-	85.9
FlexConv [10]	90.2	84.7	85.0
PointCNN [20]	92.2	84.6	86.1
DGCNN [43]	92.2	85.0	84.7
SubSparseCNN [9]	-	83.3	86.0
KPConv rigid	92.9	85.0	86.2
KPConv deform	92.7	85.1	86.4

Convolution-based approaches perform better than PointNet, PointNet++, EdgeConv @2019

Point Clouds

PointNet

PointNet++

EdgeConv

Point Transformer

Convolution based architectures for Point Cloud

KPConv

Based on the idea of attention

Attention based architectures gained popularity in NLP and Computer Vision

Attention

Attention

 $v_1 \bullet$

 v_2 •

 $v_i \bullet$

 $v_j \, \bullet \,$

 $v_n \bullet$

Each point has a value

Attention

 $v_1 \bullet k_1 \\ v_2 \bullet k_2$

$$v_i \bullet k_i \\ v_j \bullet k_j$$

 $v_n \bullet k_n$

Each point has a value and a key

In comes a query
$$q$$

Attention $v_1 \bullet k_1$ $v_2 \bullet k_2$ $v_i \bullet k_i$ $v_j \bullet k_j$

 $v_n \bullet k_n$

Query q

Output
$$= v_{i^*}$$

$$i^* = \arg\max_i q^T k_i$$

Output value, who's key matches the query

Or more like a weighted average

 $v_n \bullet k_n$

Query q

 \dot{i}

Attention to Point Cloud

$$\begin{array}{cccc} v_1 & k_1 & x_1 \\ v_2 & k_2 & x_2 \\ v_i & k_i & x_i \\ v_j & k_j & x_j \end{array}$$

Output =
$$\sum_{i} \left(q^T k_i \right) \cdot v_i$$

Query q

We don't have values and keys.

We have position, input features.

Attention to Point Cloud

Query
$${\it q} \, x_j$$

Dutput =
$$\sum_{i} \left(q^T k_i \right) \cdot v_i$$

Query is a point on the point cloud

Attention to Point Cloud $q = \phi(x_i)$ Query q $v_1 \bullet k_1$ $v_2 \bullet k_2$ $\mathsf{Output} = \sum \left[\left(q^T k_i \right) \cdot v_i \right]$ $v_i \bullet k_i$ $v_j \bullet k_i$ $v_i = \alpha(x_i)$ Use trainable functions (MLP) to $k_i = \psi(x_i)$ $v_n \bullet k_n$ obtain key, value, and query from features vectors \mathcal{X}_{i}

Attention to Point Cloud $q = \phi(x_i)$ Query q $v_1 \bullet k_1$ $v_2 \bullet k_2$ $x'_{i} = \sum \rho(\phi(x_{i})^{T} \psi(x_{i})) \cdot \alpha(x_{i})$ $v_i \bullet k_i$ $v_j \bullet k_i$ $v_i = \alpha(x_i)$ Generates update for point j $k_i = \psi(x_i)$ $v_n \bullet k_n$

Basic version

$$x'_{j} = \sum_{i \in N(x_{j})} \rho(\phi(x_{j})^{T} \psi(x_{i})) \cdot \alpha(x_{i})$$

Basic version

$$x'_j = \sum_{i \in N(x_j)} \rho(\phi(x_j)^T \psi(x_i)) \cdot \alpha(x_i)$$

Incorporating point feature + location; and using vector for attention

$$x'_{j} = \sum_{i \in N(x_{j})} \rho[\beta(\phi(x_{j}), \psi(x_{i})) + \delta(p_{j} - p_{i})] \odot \alpha(x_{i})$$
function other than dot product position of points

Pooing, un-pooling, and residual connections similar to PointNet++

Object Classification (ModelNet40)

Method	input	mAcc	OA
3DShapeNets [43]	voxel	77.3	84.7
VoxNet [20]	voxel	83.0	85.9
Subvolume [23]	voxel	86.0	89.2
MVCNN [30]	image	_	90.1
PointNet [22]	point	86.2	89.2
PointNet++ [24]	point	_	91.9
SpecGCN [36]	point	_	92.1
PointCNN [18]	point	88.1	92.2
DGCNN [40]	point	90.2	92.2
PointWeb [50]	point	89.4	92.3
SpiderCNN [44]	point	_	92.4
PointConv [42]	point		92.5
KPConv [33]	point		92.9
InterpCNN [19]	point	-	93.0
PointTransformer	point	90.6	93.7

Object Part Segmentation (ShapeNetPart Dataset)

Method	cat. mIoU	ins. mIoU
PointNet [22]	80.4	83.7
PointNet++ [24]	81.9	85.1
SPLATNet	83.7	85.4
SpiderCNN [44]	81.7	85.3
PCNN [38]	81.8	85.1
PointCNN [18]	84.6	86.1
DGCNN [40]	82.3	85.1
SGPN [39]	82.8	85.8
PointConv [42]	82.8	85.7
InterpCNN [19]	84.0	86.3
KPConv [33]	85.1	86.4
PointTransformer	83.7	86.6

State-of-the-art @2020

Semantic Segmentation on S3DIS Dataset

https://paperswithcode. com/sota/semantic-seg mentation-on-s3dis

State-of-the-art @2020 Zhao et al. "Point Transformer" 2020

Point Cloud-based Architectures

Efficient than voxel based architectures

Suitable for point cloud inputs (LiDAR or RGB-D)

Point Cloud-based Architectures

Efficient than voxel based architectures

Suitable for point cloud inputs (LiDAR or RGB-D)

Point clouds may not be the best way to represent 3D shapes

Point Cloud-based Architectures

Efficient than voxel based architectures

Suitable for point cloud inputs (LiDAR or RGB-D)

Point clouds may not be the best way to represent 3D shapes

Mesh

Mesh = Vertices, Faces, Edges

Mesh = Vertices, Faces, Edges
3d locations

$$v = (x, y, z)$$

Mesh = Vertices, Faces, Edges
3d locations

$$v = (x, y, z)$$

Triplet of vertices

 $f = (v_1, v_2, v_3)$

Conveys distinctness of local shape

Adaptive to non-uniform shape

Learning on Meshes

Architectures should be able to exploit this property

Learning on Meshes

Architectures should be able to exploit this property

Problem: non-uniformity of the mesh

Learning on Meshes

How do we define convolution, pooling, and unpooling on this?

Problem: non-uniformity of the mesh

MeshCNN

Operates over mesh edges

MeshCNN

Operates over mesh edges

Generates and updates representation vectors over mesh edges

MeshCNN

Operates over mesh edges

Generates and updates representation vectors over mesh edges

for manifold mesh every edge has two adjacent faces and four adjacent edges

Updating Edge Features

Updating Edge Features

$$\begin{array}{c} x'_e = \sigma(Kx_e + K_+(x_a + x_b) + K_-(|x_a - x_b|) & x_a \\ + K_+(x_c + x_d) + K_-(|x_c - x_d|)) & x_b \\ \end{array} \\ \\ \begin{array}{c} x_c \\ x_e \\ x_d \end{array} \end{array} \\ \begin{array}{c} x_c \\ x_d \end{array} \\ \end{array}$$

In the figure a is h_a ...

edges with N largest feature vector are collapsed at each layer

In the figure a is h_a ...

MeshCNN: Interesting Results

Classifying fine engraved cubes

Cube Engra	Cube Engraving Classification			
method	input res	test acc		
MeshCNN	750	92.16 %		
PointNet++	4096	64.26%	ſ	

MeshCNN: Interesting Results

depth

preserves important edges required for the task

MeshCNN: Interesting Results

Task 1: Vaze has a handle?

Task 2: Vaze has a neck?

MeshCNN: Human Shape Segmentation

Human Body Segmentation			
Method	# Features	Accuracy	
MeshCNN	5	92.30%	
SNGC	3	91.02%	
Toric Cover	26	88.00%	
PointNet++	3	90.77%	
DynGraphCNN	3	89.72%	
GCNN	64	86.40%	
MDGCNN	64	89.47%	

[2018]

Mesh based Architectures

More structure. Opportunity for the architecture to be more expressive.

Computationally expensive than Point Cloud based architectures.

- Pooling, unpooling, manifoldness

Conclusion

- Need for semantic understanding
- Need for Deep Learning Models on richer domains
 - Voxels, Point Clouds, Meshes, Graphs ...
- Deep Learning architectures for 3D
 - Voxel
 - Point Cloud
 - Mesh
- Dataset and Software

Conclusion

- Need for semantic understanding
- Need for Deep Learning Models on richer domains
 - Voxels, Point Clouds, Meshes, Graphs ...
- Deep Learning architectures for 3D
 - Voxel
 - Point Cloud
 - Mesh
- Dataset and Software

Next: A unifying view for constructing DL models

Backup

Conclusion: Architectures Discussed

Software

PyTorch Geometric

https://www.pytorch-geometric.read thedocs.io/

http://www.open3d.org/

Datasets

Object Classification and Object Part Segmentation

- ModelNet
- ShapeNet

3D Scene Segmentation

- ScanNet
- Stanford 3D Indoor Scene Dataset (S3DIS)
- Semantic KITTI
- Matterport 3D

Components: Convolution, Pooling, Un-pooling, and MLP

Convolution Layer

Convolution Layer

Convolution Layer

Convolutional Neural Networks

Non-linearity

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021
Convolutional Neural Networks

Pooling Layer

MAX POOLING

MEAN POOLING

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

Fully Connected Layer

$$y = \sigma(Wx + c)$$

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

Multi-Layer Perceptron (MLP)

$$y = \sigma(W_t \sigma(W_{t-1} \sigma(\cdots \sigma(W_1 x + c_1) \cdots) + c_{t-1}) + c_t)$$

Un-Pooling Layer

Nearest Neighbor

Source: Fei-Fei Li, Rajat Krishna, Danfei Xu "Stanford CS231n: Convolutional Neural Networks for Visual Recognition" Spring 2021

Un-Pooling Layer

MAX POOLING

Max Pooling using Pooling Layer Positions

